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ABSTRACT

The purpose of this presentation is to show that it is possible to use

nonsmooth optimization algorithms to design both closed-loop finite

dimensional compensators and open-loop optimal controls for flexible

structures modeled by partial differential equations.

An important feature of our approach is that it does not require modal

decomposition and hence is immune to instabilities caused by spillover

effects. Furthermore, it can be used to design control systems for struc-

tures that are modeled by mixed systems of coupled ordinary and partial

differential equations.
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DESIGN OF STABILIZING FEEDBACK-SYSTEM COMPENSATORS

The optimization-based design of finite dimensional compensators for

systems modeled by coupled systems of ordinary and partial differential

equations is made possible by a generalization of the following necessary

and sufficient stability test for linear systems described by ordinary

differential equations.

THE DYNAMICAL SYSTEM

Consider a parametrized, linear, time-invariant, interconnected, finite

dimensional dynamical system, E(p), described by a set of state equations:

_(t) = A(p)xi(t) + B(p)u(t),

y(t) = C(p)x(t) + D(p)u(t),
(1)

We shall denote the characteristic polynomial of E(p) by X(s,p) and

assume that the coefficients of X(s,P) are continuously differentiable in p.
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S-STABILITY

When, it is desired to ensure not only exponential stability of a closed

loop system, but also to exercise some control over the location of its

poles, it is convenient to make use of the following definition of S-

stability.

Definition (S-stability): Consider a linear, time-invariant, finite dimen-

sional dynamical system Z of the form (1). Let S be an open unbounded

subset of C which is symmetrical with respect to the real axis, and such

that Scz9 C+, where S c is the complement of S and C+ is the closed right

half of the complex plane.

We say that the system Z is S-stable if all the zeros of its charac-

teristic polynomial are in S. •
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A MODIFIED NYQUIST STABILITY CRITERION

Theorem : Let Sc C be as specified in the Definition and let Bc C be

any simply connected set satisfying (0,0) _B. Suppose that

D(s,q) _ C[s] is a parametrized polynomial of degree N, whose

coefficients depend on the parameter vector q ¢_ 1RnD in such a way that

for every _(s) _ PN satisfying Z[z(s)]cS, there exists a qx _ IRnD such

that

(i) Z[D(s,qx)]cS,

(ii) X(s)/D(s,qx) _ B, _/ s_ OS.

(2a)

(2b)

Then, given a polynomial X(s) e PN, Z[x(s)]cS if and only if there exists

a qx _ ]Rnu such that (2a,b) hold. []
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PROOF OF MODIFIED NYQUIST STABILITY CRITERION

( = = =>) Suppose that Z[_(s)]cS. Then, by assumption, there exists a

qx _ IRnD such that (2a), (2b) hold.

(<= - - ) Next, suppose that (2a), (2b) hold. Then, because B is a sire-

ply connected set which does not contain the origin, the locus traced out

in the complex plane by X(s)/D(s,qx), for s ¢_ _)S, does not encircle the

origin. It now follows from (2a) and the Argument Principle that

•

Comment : It is clear from the Theorem that an acceptable parametri-

zation of the polynomial D(s,q) depends on the shape of the set S and the

choice of the set B. A further requirement is imposed by semi-infinite

optimization: the parametrization must be such that it is easy to ensure

that the zeros of D(s,q) are in S. •
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OPTIMIZATION-BASED CONTROL SYSTEM DESIGN
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DESIGN CRITERIA

1. The feedback system must be exponentially stable.

" The system should have a good step input response.2-,

3. There should be little interaction between channels.

4. Plant should not be saturated by command input effects.

5. System should have high output disturbance rejection.
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MODIFIED NYQUIST STABILITY CONSTRAINT
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910,

CHANNEL INTERACTION CONSTRAINT
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OUTPUT DISTURBANCE SUPPRESSION CONSTRAINT

Must accept some disturbance amplification outside "operating

bandwidth:

_[H),d(jO,x ) _< 1.05, _' 03 E [1,1000]

COST: OUTPUT DISTURBANCE SUPPRESSION

Suppress disturbance effects inside operating bandwidth:

f(x) A= max g[H),d(j¢o, x )
toe [0.001,1]
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INTEGRATED STRUCTURE.CONTROL-SYSTEM DESIGN
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DYNAMICS

• GENERAL MODEL: Euler-Bernoulli Model, Kelvin-Voigt or

Proportional Damping, Coupled Axial and Flexural Linear PDE's.

• Control Forces Fi(t), Actuator Positions a i, Sensor Positions s i.

• SIMPLIFIED MODEL: Decoupled Motion Formulation:

mutt(t , x) + Clutxxx x + Eluxxxx(t , x) =
ni

bi(x- ai)Fi(t) .
i=l

1 1

yi(t) = J ci( _ -si)u(t , _)d_ or yi(t)= j di( _ -si)fi(t , _)d_.
o 0

BOUNDARY CONDITIONS

u(t,0) =0, Ux(t,0)=0, Juttx(t, 1)+Clutxx(t, 1)+Eluxx(t, 1)= 0,

M utt(t , ]) -- Clutxxx(t , 1) - Eluxxx(t, 1) = 0.
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DESIGN CRITERIA

1. The feedback system must be exponentially stable.

2. Control system compensator should be finite dimensional.

3. Actuators should not be saturated by command input effects.

4. System should have high mechanical disturbance rejection.

5. Average power use should be low.

6. Structure ,_eight should be low.

7. Structure should remain in elastic range.
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DESIGN VARIABLES

. CONTROL SYSTEM COMPENSATOR

(i) Coefficients of compensator differential equation.

• STRUCTURE

(i) Positions of actuators and sensors.

(ii) Parameters of damping devices.

(iii) Parameters of composite materials.

(is,) Parameters determining shape of structure.
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PRELIMINARY RESULTS

. The control system can be stabilized using a finite dimensional

proportional-plus-integral controller which ensures good distur-

bance rejection. The use of our modified Nyquist stability cri-

terion in the design of a stabilizing controller requires only

evaluations of the system frequency response. Since the frequency

response at a given frequency can be computed in some cases by

formula and in the more general cases by solving two-point linear

boundary value problems, there is no need for modal decomposition

and hence there are no spillover effects. As in the finite dimensional

case, time and frequency domain constraints can be treated simul-

taneously and, in an integrated design approach structural parameters

and constraints can also be introduced into the optimization problem.

. If a sequential design approach is used, an infinite dimensional com-

pensator can be designed using an H** frequency domain constraint

formulation which results in a convex optimization problem and

automatically ensures exponential stability with stability margin.

o An infinite dimensional controller designed as above can be

approximated by a finite dimensional controller without spillover
effects.

o A special semi-infinite optimization algorithm has been developed

which is highly effective for design with H** frequency domain
design constraints.
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A FLEXIBLE ARM OPTIMAL SLEWING PROBLEM
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THE DYNAMICAL SYSTEM

Hollow aluminum tube: one meter long, 2.0 cm diameter, 1.6 mm

thick. Attached mass weighs 1 kg. We assume that motor torque u(t) can

be directly controlled.

Standard Euler-Bernoulli tube equations with Kelvin-Voigt visco-

elastic damping:

mwtt(t,x) + Clwtxxxx(t,x) + Elwxxx_(t,x) - m_2(t)w(t,x)

= - mu(t)x, x _ [0,1]
(la)

with boundary conditions:

w(t,0) =0, Wx(t,0) =0, Clwtxx(t,1)+EIwxx(t,1)=0. (lb)

M(f_2(t)w(t, 1) - wtt(t, 1) - u(t)) + CIwtxxx(t, 1) + EIwxxx(t, 1) = 01,c)

where w(t,x) is displacement of tube from shadow tube (which remains

undeformed during the motion), u(t) is motor torque, and f_(t) rad/sed is

angular velocity. Above: m = .2815 kg/m,

E = 6.89x109 pascals, I = 1.005 x 10-8m 4,

C = 6.89x107 pascals/sec.,

The tube is very lightly

damped (0.1 per cent ).
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THREE OPTIMAL SLEWING PROBLEMS

P1 :

Minimize the time required to rotate the tube 45 degrees, from rest to

rest, subject to the torque not exceeding 5 newton-meters.

P2 "

Minimize the total energy required to rotate the tube 45 degrees, from

rest to rest, subject to the torque not exceeding 5 newton-meters and

the maneuver time not exceeding a given bound.

P3 :

Minimize the time required to rotate the tube 45 degrees, from rest to

rest, subject to the torque not exceeding 5 newton-meters and an

upper bound on the potential energy due to deformation of the tube

throughout the entire maneuver.
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THE DYNAMICAL SYSTEM

MATHEMATICAL FORMULATION OF THE THREE PROBLEMS

• To avoid technical problems associated with variable intervals and

problems due to discretization, augment dynamics by one state variable

and introduce scale factor T > 0 so that problem becomes defined on nor-

maIized time interval [0,1], with T also equal to final time.

• Tube is at rest when the total energy = energy due to rigid body

motion + energy due to vibration and deformation = 0.

(i) To ensure a slewing motion of 45 °, we define

gl(u,T) A= (0 - II/4) 2 (2)

(ii) Rigid body energy at final time is proportional to the square of the

angular velocity.

g2(u T) A f2(T)2 (3)
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(iii) Kinetic energy due to tube vibration at normalized time 1 is

wt(1, x)2dx. (4)

(iv) Potential energy due to tube deformation at normalized time 1 is

1

g4(1 u) A El j Wxx(1,x)2dx.
, - 20

(5)

• Potential energy due to deformation of the tube at normalized time t:

P(t,u)

1

A_ EI I Wxx(t'x)2dx"
2 0

(6)

(v) To limit tube deformation for all t _ [0,1] we define

gS(u, T) A___ [max { P(t
0

, u) - f(t), o 112 (71

(vi) To ensure slewing time does not exceed Tf seconds, we define

g6(u T) A T Tf (8
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FINAL PROBLEM FORM

PI" min { g°(u,T) lgi(u,T)-e<0,j_ {1,2,3,4 } },
T_IP_,u_G

where g°(u,T) A__T, IR+ A= { _,_ RI 7>0} and

G A= { u _ L**[0,1] I lu(t)t < 5, t _ [0,1] }.

P2" min i g°(u,T) lgJ(u,T)-e<0,j e 11,2,3,4,6 } },
TE IR+,uE G

where g°(u, T) A= ilu(t)ll2 dt.
0

P3" min [ g°(u,T) lgJ(u,T)-_<0,j ¢_ 11,2,3,4,5 } },
TE lR+,u_ G

where g°(u, T) A= T.

• All gJ are continuously differentiable in L**[0,1].



THE DYNAMICAL SYSTEM

COMPUTATIONAL RESULTS
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IMPLEMENTATION. Because we cannot solve the system PDEs

exactly, we cannot evaluate gJ(u,T) or VgJ(u,T) exactly. Furthermore,

since u is an infinite dimensional design vector, it can only be entered

into a computer in discretized form. We use an implementable algorithm

which adjusts integration precision and control discretization adaptively.

To discretize the PDE in space, we use the finite element method. Since

the PDE is fourth order in space, it is necessary to use elements of at least

second order. We have chosen Hermite splines as basis elements. The

input u _ G is discretized in time and Newmark's method is applied to

evaluate the resulting system of ordinary differential equations.

LINEARIZATION. The results presented are for the case in which

the f_2(t) terms are neglected in equation (1). Similar results have been

obtained by performing experiments when the _2(t) terms are included.
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OPTIMAL CONTROL FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY
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TIP DISPLACEMENT FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY
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DEVIATION FROM SHADOW BEAM FOR MINIMUM-TIME

PROBLEM WITH TORQUE CONSTRAINTS ONLY
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CONSTRAINT VIOLATION FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY:

DISCRETIZATION EFFECTS
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OPTIMAL TORQUE

FOR MINIMUM-CONTROL-ENERGY PROBLEM

WITH TORQUE CONSTRAINTS AND FINAL TIME < 0.8 SEC.
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OPTIMAL TORQUE

FOR MINIMUM-CONTROL-ENERGY PROBLEM

WITH TORQUE CONSTRAINTS AND FINAL TIME < 1.0 SEC.
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POTENTIAL ENERGY FOR MINIMUM TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY

Curve A is potential energy

Parabola B is deformation constraint.
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POTENTIAL ENERGY FOR MINIMUM-TIME PROBLEM

WITH TORQUE AND POTENTIAL ENERGY CONSTRAINTS

Curve A is potential energy

Parabola B is deformation constraint.
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OPTIMAL CONTROL FOR MINIMUM-TIME PROBLEM

WITH TORQUE AND POTENTIAL ENERGY CONSTRAINTS

Note: The optimal final time is 0.8177 seconds, an increase of only 3.7

percent over the solution of PI.
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